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ABSTRACT

Context. High-resolution spectroscopy (R>50,000) in astronomy is typically done with echelle-type spectrographs. The science for
which these instruments have proven very effective is the detection of exoplanets through the radial velocity method, and char-
acterizing their atmospheres. However, for atmospheric characterization, it has proven tedious to detect these signals, mostly due to
sensitivity constraints. While echelle-type spectrographs provide the necessary large bandwidth for radial velocity measurements, they
compromise total throughput. Additionally, the need for spectral order sorting complicates the optical design and reduces throughput
further. A high spectral resolution and a limited bandpass is required to measure exoplanet atmospheric absorption from the ground.
Therefore, we propose a new method to achieve very high spectral resolution with significantly higher throughput within a limited
bandpass, focused on a specific spectral line or set of spectral lines of interest.
Aims. We describe and test a novel method for reaching a high spectral resolution with very high unpolarized diffraction efficiency in
first-order employing a tuned, high fringe-density volume phase holographic (VPH) grating in double pass. Additionally, we provide
lab tests highlighting the potential of such a setup.
Methods. We use a wavelength-tunable laser to measure the dispersion and diffraction efficiency of a tuned VPH grating. We compare
a single-pass and double-pass setup to verify the expected results. Besides, we image the resulting spectrum to assess optical quality.
Results. We find that the VPH grating we tested can reach a diffraction-limited resolving power of >140,000 in double pass, with
a peak double-pass diffraction efficiency of 79% for unpolarized light. We tested the grating at a more modest resolution of 38,000
given sampling constraints. Based on current manufacturing abilities, we estimate double-pass diffraction efficiencies over 50% with
diffraction-limited resolving powers >200,000 should be within reach from the visible to near-infrared, where the bandwidth is limited
by detector size.
Conclusions. For specific science cases where a relatively narrow wavelength regime at (ultra-)high spectral resolution is required,
a double-pass VPH setup can prove to be very efficient. As the grating operates in first order, there is no need for cross-dispersion,
allowing for very high total system throughputs and overall, less complicated optics. This could bring ground-breaking science to
smaller class telescopes, with relatively compact instruments, and can be of special interest for exoplanet atmospheric characterization,
as these observations typically require a large amount of observing time, high signal-to-noise, and high spectral resolution.

Key words. instrumentation: spectrographs, techniques: spectroscopic, planets and satellites: atmospheres, infrared: planetary sys-
tems
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1. Introduction

High-resolution spectroscopy (R>50,000) in astronomy is typ-
ically done with cross-dispersed Echelle spectrographs for the
UV to near-infrared (near-IR) regime. First described by Na-
gaoka & Mishima (1923), well-known instruments are for exam-
ple STIS on the Hubble Space Telescope (Woodgate et al. 1998),
CRIRES & ESPRESSO on the Very Large Telescope (Kaeufl
et al. 2004; Pepe et al. 2010), and HIRES on Keck (Vogt et al.
1994). Echelle spectrographs combine a low groove density and
high spectral order, as the maximum (diffraction-limited) spec-
tral resolving power R is given by the spectral order M, multi-
plied by the number of illuminated grating lines N (Eq. 1):

R = M × N. (1)

R thus depends on the size of the incident beam falling on the
grating and its angle-of-incidence (AOI). It is the total optical
path difference imposed by the grating that counts.

The groove density, spectral order(s), and resolving power
are typically matched to satisfy the instrument requirements. An-
other important factor to consider here is the free spectral range
(FSR). The FSR of a single order Mi is defined as the spectral
distance from its maximum intensity peak to the peak of the ad-
jacent order Mi±1 and is given by

FSRi =
λ

Mi
. (2)

Typically, at high orders (M>20), to cover a broad wave-
length range (like the full visible regime, 380nm < λ < 750nm),
some method is required to split these spatially overlapping or-
ders. To do this, one typically introduces a cross-disperser – a
secondary dispersive element, like a grating or prism, with a dis-
persion axis perpendicular to the dispersion axis of the echelle, to
separate overlapping orders (Nagaoka & Mishima 1923). As an

Article number, page 1 of 11

https://arxiv.org/abs/2505.11147v1


A&A proofs: manuscript no. aanda

echelle setup relies on additional optics to separate overlapping
spectral orders, the total throughput of the system suffers and
overall complexity increases. Besides, given echelle gratings are
mechanically ruled, they are prone to suffering from manufactur-
ing errors. For example, they can produce significant amounts of
stray light because of random errors on the grating surface and
can suffer from optical ghosts as a result of periodic ruling errors
(Gao et al. 2021). Large echelle gratings are also challenging to
manufacture, and hence commercial options are limited.

A different type of grating that has gained popularity in the
world of astronomical instrumentation is the volume phase holo-
graphic (VPH) grating (Barden et al. 1998; Arns et al. 1999).
These immersed gratings have become popular because they:

– Are easily tunable in groove density, size, and glass type for
specific applications.

– Provide very high first-order diffraction efficiencies.

– Barely suffer from periodic or random errors, eliminating
ghosts and greatly reducing scattered light.

– Are well protected due to their immersion in between two
glass plates, allowing for easy handling and cleaning.

In a direct comparison, VPH gratings typically surpass echelle
gratings in terms of efficiency, scattered light performance, and
spectral resolution (Kielkopf 1981; Farret Jentink et al. 2023).
VPH gratings generally operate in first order. According to Eq. 1,
achieving high spectral resolution requires a greater number of
illuminated lines on the grating to match the resolutions provided
by echelle gratings. Thanks to their manufacturing process, VPH
gratings can accommodate this need, as they can be produced
with up to >6000 lines/mm (Barden et al. 1998), significantly
exceeding the line densities of typical echelle gratings.

However, as the groove density increases, the angle of inci-
dence (AOI) required to achieve maximum efficiency in the first
spectral order also changes. At very high groove densities, where
the AOI exceeds 36◦, VPH gratings become significantly less ef-
ficient for light in the s-polarized state (Baldry et al. 2004). Note
that for the remainder of this paper we adopt the definition in
which the s-polarization has an electric vector that is perpendic-
ular to the grating lines, similar to Baldry et al. (2004).

For measurements of unpolarized light, which are common
in astronomy, the efficiency advantages of VPH gratings can be
less apparent when compared to echelle gratings in high spectral
resolution configurations. However, to achieve high first-order
diffraction efficiency for unpolarized light at high groove densi-
ties, one can optimize the grating thickness and refractive index
modulation to align the efficiency curves of s- and p-polarized
light within a narrow wavelength range. This technique was ini-
tially described by Dickson et al. (1994), and such specially op-
timized VPH gratings are often referred to as Dickson gratings.

To achieve very high spectral resolution while maintain-
ing high throughput, a new instrument named NIGHT (Far-
ret Jentink et al. 2023) will utilize this type of grating in a double-
pass configuration. As part of the development program for this
instrument, we present, to our knowledge for the first time, a
high-efficiency, diffraction-limited experimental setup employ-
ing a single Dickson grating in a double-pass arrangement. We
also compare our experimental results with theoretical predic-
tions and briefly discuss the potential applications of this tech-
nology in astronomical instrumentation.

2. Theory

2.1. VPH gratings

All diffraction gratings operate in notably similar manners.
When light strikes a grating at a specific angle of incidence α,
it creates a phase delay as it reflects off or passes through vari-
ous grooves, fringes, or lines comprising the grating at different
locations. Consequently, the resulting wavefronts positively in-
terfere at distinct wavelengths for various angular deviations in
the outgoing beam. This leads to the reflection or transmission
of different wavelengths at different angles. The mathematical
description of the interference of wavefronts leads to the Grating
Equation (e.g., Gover et al. 2005):

mρλ = n1(sinα + sin β), (3)

for spectral order m, line-density ρ, wavelength λ, incidence an-
gle α and diffraction angle β. Gover et al. (2005) also show that
the derivative of this equation leads to the well-known equation
of angular dispersion:

dβ
dλ
=

m · ρ
cos β

, (4)

assuming the grating resides in vacuum and n1 = 1. Now that
we understand the basics of grating theory, let us take a look at
VPH gratings in particular. Arns (1995) & Barden et al. (1998)
described the basic principles of VPH gratings and showed their
potential for usage in astronomical spectrographs. A basic di-
agram of a VPH grating can be found in Fig. 1. A VPH is in
essence built up of three layers. A central layer of dichromated
material, typically dichromated gelatin (DCG), is merged be-
tween two plane glass substrates (Shankoff 1968; Barden et al.
2000; Baldry et al. 2004). The DCG layer has a varying refrac-
tive index, acting as fringes on which incoming light can reflect.
DCG has a refractive index of ∼1.5 and the index modulation can
be tuned to values between 0.02 and 0.10 (Barden et al. 2000).
This modulation can typically be described by a sinusoidal varia-
tion and is applied to the DCG by holographic illumination with
a wave pattern produced by fringes from a laser source inter-
ference pattern (Barden et al. 2000). This way of production al-
lows for great flexibility in the manufacturing process. We list
some examples of VPH gratings in high-resolution astronomi-
cal spectrographs with their respective properties and resolving
powers in Table 1. Note that some existing spectrographs achieve
a very high resolving power, for example, the HERMES instru-
ment (Sheinis et al. 2014). However, it is important to note that
HERMES is only sensitive in p-polarized light (Heijmans et al.
2011; Sheinis et al. 2014). For HERMES, a double-pass VPH
with prisms acting as reflectors was considered but ultimately
discarded due to tight tolerances and limited bandwidth (Barden
et al. 2008), also see Sect. 4.2.

2.2. Diffraction efficiencies of VPH gratings

Much literature has been written about VPH grating theory. One
of the most cited examples is Kogelnik (1969), who provides an
approximation for the first-order diffraction efficiencies in both
polarizations. This equation is given by

η =
1
2

sin2
(
π∆ngd
λ cosα2

)
+

1
2

sin2
(
π∆ngd
λ cosα2

cos(2α2)
)
, (5)

where the first term is for s-polarized light, and the second
term is for p-polarized light. In Eq. (5), ∆ng refers to the index
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Table 1. Examples of astronomical spectrographs that use a VPH grating as the main disperser. The spectrographs are sorted according to resolving
power.

Instrument max R Density [ℓ/mm] AOI [◦]a Apertureb [mm × mm] Reference

NIGHTc 75,000 1407 49.6 190 × 130 Farret Jentink et al. (2023)
HERMES 50,000 3827 67 550 × 220 Sheinis et al. (2014)
WIYN 25,000 3300 65 480 × 210 Bershady et al. (2008)
APOGEE 22,500 1009.3 54 475 × 290 Arns et al. (2010)
WEAVE 25,000 2500–3500 54 373 × 227 Bianco et al. (2018)
MOONS 18,300 1056 53 2 (mosaic) × 280 × 290 Ernesto Oliva (co-PI MOONS)
AAOmega 10,000 1700 47 > 260 × 190 Smith et al. (2004); Sharp et al. (2006)
6dF/RAVE 8,000 1700 47 > 260 × 190 Saunders et al. (2001); Baldry et al. (2004)
DESI 5,500 1157.4 10-20 180 × 160 Edelstein et al. (2018); Ishikawa et al. (2018)

a

The AOI does not specifically refer to the incidence angle on the dichromated material. The values in the table were taken from the literature and
typically refer to the incidence angle on the glass substrate. However, the incidence angle on the gelatin will depend on the refractive index of the
glass substrate. This information is typically not available in the literature. b Here we only define the slightly ambiguous term aperture. For most
instruments, the literature does not make a clear distinction between the substrate size and clear aperture. c For NIGHT, a VPH in double pass as
described in this paper is proposed. The line density, AOI, and aperture are thus more modest.

β0

α0

α1
α2

β1
β2

n0

n1
n2
glass

air

d

Λ

Fig. 1. A diagram of a VPH grating. The dichromated gelatin layer of
refractive index n2 and index modulation ∆ng is immersed in two glass
plates of refractive index n1. d is the thickness of the DCG layer and Λ
the seperation between fringes. For a VPH grating in Littrow condition
αi = βi.

modulation of the grating, d the thickness of the grating (exclud-
ing substrate), αi the angle of incidence and λ the wavelength.
Baldry et al. (2004) also describe in detail how a VPH grating
can be optimized to become a Dickson grating. In summary, one
tunes the thickness and index modulation to maximize efficiency
while forcing equality of both terms in Eq. (5). A requirement is
that this happens at or very near the Bragg angle, allowing for re-
flection by the grating fringes at very high diffraction efficiency
(see Fig. 1). The Bragg condition is given by

mλ
n2
= 2Λsinα2. (6)

Figure 2 shows an example of s, and p–polarization diffrac-
tion efficiency curves as a function of grating thickness d.

Tuning a grating to match polarization diffraction efficiency
curves thus allows for very high throughput at high disper-
sion because of the high fringe density (reminding ourselves

0.0 2.5 5.0 7.5 10.0 12.5 15.0

d [um]
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D
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Total

Fig. 2. An example of the Kogelnik efficiency curves for s and p-
polarization states. ∆ng is 0.145 and n2 is 1.3. This grating is tuned at
a DCG layer thickness of 9µm for a wavelength of 1040nm with 1400
fringes/mm and a (close to Bragg) incidence angle of α2 = 34.55◦. For
this thickness, the diffraction efficiency for unpolarized light reaches
near unity. This efficiency curve does not include potential reflection
and absorption losses.

of Eq. (4)). However, it is important to realize that the grat-
ing is only fully optimized for one wavelength. Let us call this
wavelength λcen. Wavelengths that are different from λcen will
be transmitted in first-order at different diffraction efficiencies.
Luckily, Kogelnik also derived an approximation for the full
width at half-maximum (FWHM) of the bandwidth (∆λ) due to
this effect. This FWHM is given by

∆λ ≈
Λ

d
cotα2. (7)

If we take the optimized grating presented in Fig. 2 and take
a look at the corrected efficiency curve by multiplying with a
Gaussian efficiency function with a FWHM given by Eq. (7), we
find the curve shown in Fig. 3. We find that the bandwidth is
reduced quite significantly by this effect. Overall, we can con-
clude that the Dickson grating can be tuned to produce a very
high diffraction efficiency in first order but only works over a
limited wavelength range.
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Fig. 3. Diffraction efficiency curves versus wavelength. The dotted and
dash-dotted lines show the efficiency curves for the two polarization
states from Eq. (5). The solid line shows the efficiency curve for un-
polarized light. The dashed line shows the efficiency curve after hav-
ing been corrected for the bandwidth using Eq. (7). The shaded region
shows the FWHM.

α0 = β0 (Littrow)

2·β(λmax) 

2·β(λmin) 

β(λmax)
β(λmin)

*angles not to scale

Fig. 4. A VPH in double pass. The grating is placed in Littrow, implying
that α0 = β0 for λcen. We can see that for wavelengths other than λcen,
they will hit the grating at an angle different from α0 at the second pass.
How much these rays are off-Littrow is determined by the single-pass
dispersion (Eq. 4).

2.3. A VPH in double pass

In some optical layouts, it can be advantageous to place disper-
sive (or other) optical elements in a multi-pass configuration.
The dispersive power and spectral resolution of that optical ele-
ment can then be multiplied by a factor equal to the number of
passes (Wiggins & Saksena 1958; Lowenthal et al. 1966). This
can reduce the weight, size, complexity, and cost of instruments.
For example, putting a VPH grating in double pass will increase
the dispersive power and spectral resolution two-fold. However,
as the light will pass through the grating twice, this will also re-
duce the effective bandwidth of the setup. Additionally, as the
light is already dispersed at the second pass, this will cause light
to hit the grating slightly off-Bragg, reducing the throughput fur-
ther. However, we will demonstrate that this effect has nearly no
impact on our application case.
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Fig. 5. The theoretical diffraction efficiency curves of the grating
in single-pass, double-pass (multiplying twice by the Gaussian effi-
ciency function from Fig. 2), and double-pass taking into account the
wavelength-dependent incidence angle at the second pass. In the lower
frame, we plot the residuals between both double-pass solutions. We
find that overall we lose up to ∼4 % in diffraction efficiency when taking
into account the wavelength-dependent incidence angle. This fraction is
near negligible when comparing it to the efficiency losses caused by the
FWHM correction introduced by Eq. (7).

A diagram of a VPH in double pass can be found in Fig. 4.
To determine how the efficiency drops off-Littrow, we can use
Eqs (4), (5). Firstly, we integrate Eq. (4) from λcen to λ to form

β(λ) = β0 + (λ − λcen)
m · ρ
cos β0

. (8)

Now, at the second pass through the grating, we can define the
incident angle as

αII,0(λ) = β(λ). (9)

Substituting this term into the original Kogelnik efficiency equa-
tion (Eq. 5) will give us a wavelength-dependent diffraction effi-
ciency:

η(λ) =
1
2

sin2
(
π∆ngd

λ cosαII,0(λ)

)
+

1
2

sin2
(
π∆ngd

λ cosαII,0(λ)
cos(2αII,0(λ))

)
.

(10)

Let us now examine how the new wavelength-dependent
diffraction efficiency influences the efficiency curve of our pre-
viously simulated grating (Fig. 2 and 3). We find the new theo-
retical diffraction efficiency curve of the VPH grating in double
pass in Fig. 5. Overall we conclude that the effects is minimal
and the effective bandwidth with > 50% diffraction efficiency in
double pass is > 100nm.

3. Results

3.1. Measurement Setup

To be able to determine and verify the theoretical performance of
the VPH we presented in Sect. 2, we assembled two experimen-
tal setups: one to determine diffraction efficiency in single-pass,
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Fig. 6. First-order diffraction efficiency measurements and simulations
in single-pass configuration of the VPH. The simulated efficiency in-
cludes the Kogelnik approximation (black dashed line) and RCWA-
derived values. The solid lines (RCWA) and dotted lines (measurement)
are supplied by the manufacturer Wasatch Photonics. The measured un-
polarized and p-polarized efficiency curves demonstrate strong agree-
ment with our RCWA simulated curves. However, the s-polarized light
measurements show greater deviation. Several factors may contribute to
these discrepancies: variations in the bulk refractive index, index mod-
ulation and effective thickness of the DCG layer, and to a lesser extent,
the thickness and flatness of the AR-coating. These parameters cannot
be measured directly, resulting in inevitable small deviations between
actual values and those used in our models. These can significantly af-
fect peak efficiency, curve steepness, and centering around the central
wavelength, becoming more apparent and having a larger impact to-
wards the bluer end of the spectrum.

and one to determine dispersion in double pass. Both measure-
ments relied on many of the same components: a wavelength
tunable laser, fiber injection mechanism, spectrum analyzer, col-
limator, and near-IR detector. Figures A.1 and A.2 in App. A
show diagrams of our test setups.

3.2. Diffraction efficiency

The wavelength tunable laser used in our measurements is
single-mode and tunable from ∼1075 nm to ∼1090 nm. Given
the delicate alignment of the rotating setup where we can
switch between VPH and fold mirror (see App. A Fig. A.1),
we only performed an efficiency measurement for one wave-
length at 1075.9 nm. The laser is connected through polarization-
maintaining (PM) fibers and attenuators and as such, with how
our fiber is injected, we only measured s-polarization. Further-
more, depending on the chosen wavelength for our laser, we
noticed quick sub-second power oscillations at the photodiode,
leading us to believe that the mode-locking of the laser is not
very stable. As we will see later in Sect. 3.4 this is indeed the
case. Likely, the laser mode-switching introduced polarization
fluctuations, resulting in power oscillations at the diode. A lin-
ear polarizer was added to mitigate any potential polarization
crosstalk effects and remove the p-polarized component. The
measurement wavelength of 1075.9 nm was chosen as this was
the mode for which we recorded the smallest power fluctuations
(< 5%).

In Fig. 6 we compare our measured efficiency value to
simulated efficiency values, both through the Kogelnik Equa-
tion (Eq. (5)) as in Fig. 2, rigorous coupled-wave analysis
(RCWA) including reflection and absorption losses, and effi-
ciency measurements supplied by the manufacturer. We find that

our diffraction efficiency value agrees well with the RCWA sim-
ulated values and measurements supplied by the manufacturer.
We find that the Kogelnik efficiency value is higher but this is
consistent with theory as it does not account for reflection and
absorption losses at or in the various layers of the grating. Based
on our previously presented simulations in Fig. 5, we expected to
be able to reach similar efficiencies at the second pass with a few
percent of extra losses at the edges of the band. Overall, looking
at the single-pass diffraction efficiency curves in Fig. 6, this grat-
ing should allow us to reach > 50% diffraction efficiency over a
100nm bandwidth in double pass, with a peak efficiency around
80%. This value will of course depend on the losses at the reflec-
tor before the second pass. However, standard silver, aluminum,
gold, or dielectric coatings already allow for very high reflection
efficiency over a large wavelength regime, so this should not be
a major loss-contributor for most wavelengths. Also, it is impor-
tant to note that further losses could be induced at the AR coating
on second-pass as the incidence angle will not be fully optimal.

3.3. Theoretical dispersion and resolution

As shown by Wiggins & Saksena (1958) & Lowenthal et al.
(1966), for a plane grating in double pass, the dispersion, res-
olution, and diffraction efficiency should be multiplied by twice
that of the single-pass equivalent. They note that this only ap-
plies to an ideal case where the grating is in Littrow for both
passes and the full beam falls on the grating. Given a grating
is typically slightly off-Littrow to offset entrance and exit slits,
there are usually some losses. Also, depending on the grating
size, it might not allow for the full beam to be captured on the
second pass, downgrading efficiency, and possibly resolution. To
determine the dispersion and resolution in double pass and verify
the hypotheses of Wiggins & Saksena (1958) & Lowenthal et al.
(1966) we modified the setup of Fig. A.1 into the setup shown
in Appendix A Fig. A.2. This setup places the grating in Littrow
in single-, and double pass. With the beamsplitter in the second
pass, we can isolate the beam that has traveled through the VPH
twice. By imaging this spectrum we can verify the dispersive
power by changing the laser wavelength and compute angular
dispersion from linear dispersion as seen on the detector. The
spot size at the focus will tell us the resolving power.

For our measurements, the wavelength of the laser is tuned
to two single modes close to 1077 nm. The total beam diame-
ter of the collimator in our setup is 400 mm. As such, we place
an iris in front of the grating to cut the beam to a diameter of
10± 0.2 mm.

We shall express the spectral resolution as the FWHM of a
monochromatic line recorded on the detector expressed in linear
(as opposite to angular) scale, denoted by parameter s. The three
components listed below, the entrance slit, iris, and grating, will
eventually determine the resolving power, i.e. the wavelength of
the line divided by the FWHM of the line expressed in wave-
length scale determined by the linear dispersion:

– The entrance slit. This is the fiber size (6 µm monomode fiber
in our setup). The spot size on the focal plane is determined
by the magnification M (1 in our case), multiplied by the slit
size:

sfib = dfib · M = dfib ·
fcam

fcoll
= dfib. (11)

– The iris. The divergence of the slit is given by θ = λ
D . Con-

sequently, the spot size on the focal plane is given by:

siris =
λ

diris
· fcam. (12)
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– The grating. The reciprocal linear dispersion of the grating is
given by

Drec =
dgroove · cosβ
2 · m · fcam

, (13)

where dgroove is the groove size, m the order of diffraction,
and the factor of 2 is introduced by the grating being in dou-
ble pass, doubling the dispersion and halving the reciprocal
dispersion. This value has units of nm/mm. As such, it re-
lates a change in wavelength (in nm) across distance on the
focal plane (in mm). We can use the equation for the resolv-
ing power R = λ/∆λ to derive the spot size:

sgroove =
∆λ

Drec
=

2 · m · λ · fcam

R · dgroove · cosβ
. (14)

The diffraction-limited resolving power of the double-pass
grating is given by R = 2 · N · m, where N is the number
of illuminated lines, given by diris/(cosβ dgroove). The mul-
tiplication factor of 2 was again added for the double-pass
configuration. Consequently, we find that the spot size as a
result of divergence from the grating is given by

sgroove =
λ

diris
· fcam, (15)

equal to the spot size introduced by diffraction from the iris.

Trivially, we see that the spot size introduced by divergence from
the entrance slit is significantly smaller than the limiting spot
size introduced by divergence from our iris and grating. The re-
solving power of our demonstrator spectrograph should thus be
diffraction-limited by the grating/iris, not limited by the size of
the entrance slit. Using the equations above we find that the spot
size introduced by the iris and grating is 307± 8 µm. This means
that any spot has a minimum FWHM equal to this value. For a
pixel size of 30 µm this corresponds to roughly 10 pixels. From
this FWHM and the reciprocal linear dispersion, as computed
before, we can find the maximum resolving power. The small-
est resolvable wavelength ∆λ is equal to the FWHM induced
by the diffraction limit. In units of wavelength, this is equal to
0.0260 nm. As such, the maximum achievable resolving power
induced by divergence from the iris and grating is:

Rmax =
λ

∆λ
=

1077 nm
0.0260 nm

= (4.14 ± 0.08) · 104. (16)

In conclusion, for our measurement setup, where the wave-
length, camera focal length, and dispersion are fixed, the max-
imum achievable spectral resolution will always be limited by
diffraction from the iris, as long as the grating performs as ex-
pected. Given that the maximum achievable spectral resolution
induced by the iris aperture and grating are the same, any signifi-
cant reduction in spectral resolution will be a result from grating
imperfections and/or improper alignment of the grating.

Note that for this calculation and our tests we chose a fairly
small iris aperture. Any increase in aperture size would have al-
lowed us to reach higher spectral resolutions. The size of the
clear aperture of our grating of 96× 51 mm points towards a the-
oretical upper limit of Rmax = 143, 000 for the resolving power.
However, at these higher resolutions, the spot size would have
become too small for proper sampling with our detector. While
changing the camera focal length could have addressed this sam-
pling constraint, it would have prevented us from capturing mul-
tiple laser lines within the detector’s footprint, which is required

to measure the dispersion, as discussed in Sect. 3.4. Therefore a
more modest spectral resolution was chosen for this demonstra-
tion.

For later comparison, we also determine the (non-reciprocal)
linear dispersion D. This value solely depends on the camera
focal length f , the groove density G, and the angle of diffraction
β:

D =
G · f
cosβ

=
0.0014 ℓ/nm · 2850 mm

cos 47.5◦
= 5.91 mm/nm. (17)

Since our grating is in double pass, the dispersion should be mul-
tiplied by a factor of two. The resulting theoretical linear disper-
sion is thus equal to 11.82 mm/nm.

3.4. Measured dispersion and resolution

We found two laser modes that were stable in wavelength and
within close enough range to both fall on the detector. The re-
sulting spots can be found in Fig. 7. The simultaneous spec-
trum analyzer measurements can be found in Fig. 8. Now that
we know both the wavelength and spatial separation of the
two modes we can compute the dispersion using the collima-
tor focal length and pixel size. The computation is straightfor-
ward and can be found in Appendix B. We obtain a value of
11.017 mm/nm, slightly lower than the value derived from the-
ory, which is 11.082 mm/nm. Very likely this is caused by our
grating having been placed slightly off Littrow, changing the dis-
persion as a consequence. The computation of the real angle of
refraction can also be found in App. B.

The spectral resolution can be derived from the FWHM of
an individual mode as seen on the frame of Fig. 7. This natu-
rally assumes that the intrinsic laser line width is significantly
smaller than the FWHM. This is a fair assumption as the laser
is a single-mode Fabry Perot laser diode with a cavity length
of 3 mm. Combined with the fact that these are typically gold-
coated, resulting in very high cavity finesse, the intrinsic laser
line width should be much smaller than the smallest resolvable
wavelength (QPhotonics, priv. comm.). We employ the results
of the Gaussian fits from above to derive the resolving power.
The values are σ1 = 4.37 ± 0.05 pix & σ2 = 4.47 ± 0.04 pix.
Using the pixel size of 30 µm and linear dispersion relation of
11.017 mm/nm derived in App. B, we can convert these values
to σλ,1 = 0.0119 ± 0.0002 nm & σλ,2 = 0.0122 ± 0.0002 nm.
Now to derive the resolving power we employ Eq. (18):

∆λ = FWHM = 2 ·
√

2 ln(2) · σλ ≈ 2.3548σλ, (18)

and Eq. (19):

R =
λ

∆λ
, (19)

where λ is the wavelength derived from the Gaussian fits in
Fig. 8. This results in resolving powers of R1 = (3.84±0.05) ·104

& R2 = (3.75 ± 0.04) · 104. On average, we obtain a resolv-
ing power of ∼38k. Adjusting for the lower dispersion than ex-
pected from theory, this value corresponds well with our predic-
tions and further supports the claim that our setup is diffraction-
limited. Given we do not see a major deviation we can conclude
that the grating does not induce any major losses in resolving
power. If we had access to more than two single laser lines, we
could have improved the precision of our dispersion and resolv-
ing power measurements. However, given the very narrow wave-
length range studied, we would not expect significant variations
within this regime.
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Fig. 7. In the upper frame we find two stacked exposures of two dif-
ferent laser modes. The image has been corrected for background flux.
We show that the two different modes are spatially separated as a result
of dispersion by the VPH. In the lower frame we find the 1D spectrum,
resulting from stacking over the vertical axis. The data has been nor-
malized to a peak value of 1 and shown with a dashed line. The solid
grey line denotes two Gaussian fits to both peaks. These fits are used to
derive the positions on the frame and FWHM of the peaks in order to
derive the dispersion and resolving power. µ1 and µ2 refer to the mean
values of these distributions.
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Fig. 8. The same two modes as displayed in Fig. 7 but now measured
with the spectrum analyzer. The dashed and dotted lines show the raw
data and the solid grey lines Gaussian fits. The mean values of these dis-
tributions are used to derive the wavelength solution of the two modes.

4. Design considerations for a VPH in double pass

4.1. The angle-of-incidence and resolving power

In a non-diffraction-limited case, the maximum resolving power
of an unimmersed grating is given by (Baldry et al. 2004):

R =
λ

∆λ
=

fcol

θs ftel

(
tan(α0) +

sin(β0)
cos(α0)

)
(20)
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Fig. 9. Resolving power versus angle of incidence on an unimmersed
grating for a single-pass, and double-pass configuration. The focal
lengths and slit size is fixed. We find that at a resolving power of 50,000,
the AOI is much less steep for a double-pass configuration than for a
single-pass configuration.

If we take a Littrow case (αi = βi), the equation reduces to
the very familiar equation:

R =
fcol

θs ftel
2 tan(α0) (21)

For α0 values between 0◦ and 90◦, we find that for a fixed
telescope and collimator focal length, and fixed slit size, the re-
solving power increases for increasing angle following a tangent
relation. For a double-pass setup, we already know that we can
double the spectral resolving power for the same angle of inci-
dence. In Fig. 9 we compare the two trends. Reaching a resolving
power of 200,000 would require a very steep AOI of about 75◦
for a single-pass VPH. For a double-pass solution, the AOI is a
more modest (but still steep) 63◦. It is important to note here that
not every AOI will give high diffraction efficiency. As discussed
before, this is only achieved if the Bragg condition is satisfied
(Eq. (6)), and this angle is close to the blaze angle of the grat-
ing. In other words, a grating that has been designed to work at a
specific angle of incidence can typically not be used at a smaller
AOI but in double pass to achieve the same resolving power.

Circumventing a very steep AOI would require a smaller slit,
typically requiring adaptive optics (AO) to keep high throughput.
We can start to see why (for a seeing-limited case) reaching a
very high resolving power with a VPH works better for smaller
telescopes.

Achieving a steep AOI on the grating is not impossible. For
example, one can use slanted fringes and immersion of the grat-
ing in prisms (turning it effectively into a GRISM) to achieve a
high AOI on the grating but not on the air-to-glass surface. For
example Arns & Dekker (2008) investigated VPH gratings with
slanted fringes as a possible alternative for the cross-dispersers
in the ESPRESSO instrument (Pepe et al. 2010) and CODEX
(Pasquini et al. 2010) (which by now goes under the name AN-
DES, Marconi et al. 2022). One could also design the prism after
the first pass to use total inner reflection, effectively removing
the second air-to-glass interface. However, slanted fringes and
GRISMS come with their own caveats, like a changing tilt or
curvature of the fringes (Rallison & Schicker 1992), and tight
tolerances on optical quality of the prisms (Barden et al. 2008).
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Fig. 10. On the horizontal axis we find the resolving power and on the
vertical axis the number of pixels required in one line to sample the full
effective bandwidth of the grating. Here we used the assumption that
every ∆λ element is sampled by two pixels. Two black lines show the
curves for a single-, and double pass setup, where the double-pass line
is dashed. Note that a single-pass grating requires more pixels because
it produces a larger effective bandwidth. A red solid line shows a 4K
detector.

4.2. Tolerances and detector

For a VPH GRISM, one could utilize either a single block of
glass for the prism, which would be extremely heavy given the
sizes and angles for high-spectral-resolution gratings, or a set
of parallel prisms. The latter option presents challenges in tol-
erance, as individual prisms would need to be phased in wave-
length, introducing manufacturing or assembly tolerances on the
order of a fraction of a wavelength. As such, we consider our
solution with a plane mirror behind the VPH as the simpler so-
lution. The optical alignment of the mirror is not very challeng-
ing and can be compared to the alignment of a blazed grating
that is slightly misaligned to offset entrance and exit slits of
the spectrograph. Even without a GRISM, operating a VPH in
double pass configuration can impose stricter tolerances on the
optical quality of its surfaces compared to a single-pass layout
( e.g., on flatness and wavefront-error, WFE ). Especially in a
diffraction-limited scenario where the wavefront-error budget is
significantly tighter. However, in a diffraction-limited case, grat-
ings can be made smaller to achieve the desired resolution, aid-
ing in reaching tighter tolerances. Consequently, for adaptive-
optics-assisted telescopes, where the targets have a smaller foot-
print in the focal plane, grating footprints can also be smaller.
For high-Strehl AO systems, the grating size is independent of
the telescope size and solely depends on resolution and wave-
length.

Let us note here that the bandwidth of our VPH spectrograph
will be reduced with increasing line density and angle of inci-
dence. If we take a fixed grating period but increasing AOI and
thus increasing resolution (see Eq. (20)), and compare the num-
ber of pixels one would need to sample the full effective band-
width at 2 pixels per resolution element, we find Fig. 10.

The result is that even 4K detectors are by far not large
enough to sample the full efficient bandwidth of these VPHs.
This becomes even more significant when one chooses a finer
sampling than 2 pixels per resolution element, typically pre-
ferred at high spectral resolutions to sample narrow spectral
lines.

Eventually, we point out that this latter discussion is based
on a design simplification since a grating cannot be efficient at
any AOI (or spectral resolution) for a fixed grating period. Cus-
tom optimization will always be necessary to reach maximum

efficiency, where one optimizes the grating thickness, refractive
index modulation, and groove density to match the Bragg and
blaze angle.

When comparing a double-pass VPH with cross-dispersed
echelle gratings, we find that the VPH delivers higher efficien-
cies across the full effective bandwidth measurable by any com-
mercially available detector or even detector mosaics. However,
echelle gratings enable coverage of a larger wavelength regime
through efficient utilization of 2D detector arrays. Therefore, for
applications requiring very broad wavelength coverage, such as
high-precision radial velocity measurements where many spec-
tral lines must be resolved, echelle spectroscopy proves more ef-
fective. Conversely, for science requiring narrower wavelength
bands (< 100 nm), the double-pass VPH offers superior ef-
ficiency. Furthermore, in spectrographs with multiple slits or
fibers, the VPH presents a practical advantage over echelle grat-
ings by eliminating the risk of overlap between neighboring
spectral orders. It should be noted that for VPH spectrographs
covering wider wavelength regimes, the camera design necessar-
ily becomes larger, as the extended spectral trace requires larger
optics to prevent vignetting.

5. Conclusions

We presented a method to achieve (ultra-)high spectral resolu-
tion with very high diffraction efficiency by utilizing a VPH grat-
ing in a double-pass configuration, as part of the development of
the NIGHT instrument. We found that our grating reached a very
high double-pass diffraction efficiency of 79%. Based on manu-
facturer measurements and RCWA simulations we estimate that
it should be possible to reach > 50% double-pass diffraction effi-
ciency over a 100nm bandwidth. Additionally, our findings indi-
cate that the setup is diffraction-limited and that the VPH grating
does not compromise spectral resolution when used in a double-
pass arrangement. The slight discrepancy between our measured
spectral resolution and theoretical expectations can be attributed
to a minor misalignment of the grating.

In the field of exoplanet atmospheric characterization, where
high spectral resolution over a narrow bandwidth at high signal-
to-noise ratio (SNR) is often required, instruments specifically
designed around VPH gratings could be extremely beneficial.
Operating in the first spectral order results in a large free spec-
tral range, with the primary bandwidth limitation arising from
the grating not being fully optimized for a broad range of wave-
lengths. We show that the bandwidth defined by the grating
typically exceeds what can be effectively sampled by standard
off-the-shelf detectors. Additionally, we discuss several design
considerations that are important for the development of such
double-pass VPH-based instruments.
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Appendix A: Measurement setups Appendix B: Computation of dispersion

The relation between angular deviation θ, collimator length f
and spatial separation H follows from basic trigonometry:

θ = 2 · tan−1
(

H
2 · f

)
From the Gaussian fits in Fig. 7 we find a pixel separation of

281.53 – 49.60 = 231.93 pixels. Given a pixel size of 30 µm this
means:

H/2 = 30 µm · 231.93 = 6957.9 µm = 6.9579 mm

Wavelength separation following from the Gaussian fits in
Fig. 8 equals 0.63nm.

This implies that the linear dispersion is equal to:

6957.9 µm
0.63 nm

= 11017 µm/nm = 11.017 mm/nm

Using the trigonometric relation above we can now compute
the angular dispersion:

dβ
dλ
= 2 · arctan

(
11.017 mm/nm

2580 mm

)
= 0.00427 rad/nm

The theoretical linear dispersion computed in Chapter 3.3 is
11.82 mm/nm. Following Eq. (17), we can determine the real,
measured angle of diffraction β:

β = arccos
(
G · f

D

)
=

0.0014 ℓ/nm · 2850 mm
11.017 mm/nm

= 47.45◦ (B.1)
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Fig. A.1. Setup used to determine diffraction efficiency in a single-pass configuration. A laser driver powers a wavelength-tunable laser diode
which feeds light into a single-mode (SM) fibre. The fiber is connected to two attenuators, of which one is tunable. These attenuators ensure that
the detector is not saturated within reasonable integration times. After the attenuators, light is injected and sent through a 50/50 beamsplitter. The
reflected component is sent into a spectrum analyzer which allows for constant monitoring of the wavelength sent out by the tunable laser. The
transmitted component is collimated by a 40cm off-axis parabola (focal length: 2580 mm). A linear polarizer and iris form the entrance pupil of
the grating measurement setup. The collimated beam can be sent through the VPH or reflected by a plane mirror. A secondary plane fold mirror
and a doublet form the camera of the system and focus light on a photodiode which allows for power measurement.
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Fig. A.2. Setup used to determine the dispersion and resolving power of the VPH grating in double pass. Overall, the optical layout is very similar
to the setup in Fig. A.1. The only difference is that the linear polarizer has been removed and with the help of the fold mirror, the VPH is placed
in double pass. The beamsplitter that is used to inject light into the spectrum analyzer is now used in the second pass to re-direct the spectrum to a
near-infrared (NIR) detector to image the resulting spectrum.
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